Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Nat Cardiovasc Res ; 3(3): 389-402, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38737787

RESUMEN

The adult mouse heart responds to injury by scarring with consequent loss of contractile function, whereas the neonatal heart possesses the ability to regenerate. Activation of the immune system is among the first events upon tissue injury. It has been shown that immune response kinetics differ between regeneration and pathological remodeling, yet the underlying mechanisms of the distinct immune reactions during tissue healing remain unclear. Here we show that the immunomodulatory PD-1-PD-L1 pathway is highly active in regenerative neonatal hearts but rapidly silenced later in life. Deletion of the PD-1 receptor or inactivation of its ligand PD-L1 prevented regeneration of neonatal hearts after injury. Disruption of the pathway during neonatal cardiac injury led to increased inflammation and aberrant T cell activation, which ultimately impaired cardiac regeneration. Our findings reveal an immunomodulatory and cardioprotective role for the PD-1-PD-L1 pathway in heart regeneration and offer potential avenues for the control of adult tissue regeneration.

2.
Proc Natl Acad Sci U S A ; 121(4): e2315925121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227654

RESUMEN

Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and adolescents. Fusion-negative RMS (FN-RMS) accounts for more than 80% of all RMS cases. The long-term event-free survival rate for patients with high-grade FN-RMS is below 30%, highlighting the need for improved therapeutic strategies. CD73 is a 5' ectonucleotidase that hydrolyzes AMP to adenosine and regulates the purinergic signaling pathway. We found that CD73 is elevated in FN-RMS tumors that express high levels of TWIST2. While high expression of CD73 contributes to the pathogenesis of multiple cancers, its role in FN-RMS has not been investigated. We found that CD73 knockdown decreased FN-RMS cell growth while up-regulating the myogenic differentiation program. Moreover, mutation of the catalytic residues of CD73 rendered the protein enzymatically inactive and abolished its ability to stimulate FN-RMS growth. Overexpression of wildtype CD73, but not the catalytically inactive mutant, in CD73 knockdown FN-RMS cells restored their growth capacity. Likewise, treatment with an adenosine receptor A2A-B agonist partially rescued FN-RMS cell proliferation and bypassed the CD73 knockdown defective growth phenotype. These results demonstrate that the catalytic activity of CD73 contributes to the pathogenic growth of FN-RMS through the activation of the purinergic signaling pathway. Therefore, targeting CD73 and the purinergic signaling pathway represents a potential therapeutic approach for FN-RMS patients.


Asunto(s)
Rabdomiosarcoma , Adolescente , Niño , Humanos , Diferenciación Celular/genética , Línea Celular Tumoral , Receptores Purinérgicos P1 , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Transducción de Señal
3.
J Clin Invest ; 134(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37856214

RESUMEN

Cardiovascular diseases are the most common cause of worldwide morbidity and mortality, highlighting the necessity for advanced therapeutic strategies. Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) is a prominent inducer of various cardiac disorders, which is mediated by 2 oxidation-sensitive methionine residues within the regulatory domain. We have previously shown that ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing enables the heart to recover function from otherwise severe damage following ischemia/reperfusion (IR) injury. Here, we extended this therapeutic concept toward potential clinical translation. We generated a humanized CAMK2D knockin mouse model in which the genomic sequence encoding the entire regulatory domain was replaced with the human sequence. This enabled comparison and optimization of two different editing strategies for the human genome in mice. To edit CAMK2D in vivo, we packaged the optimized editing components into an engineered myotropic adeno-associated virus (MyoAAV 2A), which enabled efficient delivery at a very low AAV dose into the humanized mice at the time of IR injury. CAMK2D-edited mice recovered cardiac function, showed improved exercise performance, and were protected from myocardial fibrosis, which was otherwise observed in injured control mice after IR. Our findings identify a potentially effective strategy for cardioprotection in response to oxidative damage.


Asunto(s)
Cardiomiopatías , Enfermedades Cardiovasculares , Ratones , Animales , Humanos , Sistemas CRISPR-Cas , Edición Génica , Corazón , Cardiomiopatías/genética , Enfermedades Cardiovasculares/genética
4.
Cardiovasc Res ; 120(1): 56-68, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-37890031

RESUMEN

AIMS: RNA binding proteins play essential roles in mediating RNA splicing and are key post-transcriptional regulators in the heart. Our recent study demonstrated that RBPMS (RNA binding protein with multiple splicing) is crucial for cardiac development through modulating mRNA splicing, but little is known about its functions in the adult heart. In this study, we aim to characterize the post-natal cardiac function of Rbpms and its mechanism of action. METHODS AND RESULTS: We generated a cardiac-specific knockout mouse line and found that cardiac-specific loss of Rbpms caused severe cardiomyocyte contractile defects, leading to dilated cardiomyopathy and early lethality in adult mice. We showed by proximity-dependent biotin identification assay and mass spectrometry that RBPMS associates with spliceosome factors and other RNA binding proteins, such as RBM20, that are important in cardiac function. We performed paired-end RNA sequencing and RT-PCR and found that RBPMS regulates mRNA alternative splicing of genes associated with sarcomere structure and function, such as Ttn, Pdlim5, and Nexn, generating new protein isoforms. Using a minigene splicing reporter assay, we determined that RBPMS regulates target gene splicing through recognizing tandem intronic CAC motifs. We also showed that RBPMS knockdown in human induced pluripotent stem cell-derived cardiomyocytes impaired cardiomyocyte contraction. CONCLUSION: This study identifies RBPMS as an important regulator of cardiomyocyte contraction and cardiac function by modulating sarcomeric gene alternative splicing.


Asunto(s)
Empalme Alternativo , Células Madre Pluripotentes Inducidas , Animales , Humanos , Ratones , Conectina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , ARN/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
Dev Cell ; 58(24): 2867-2880.e7, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37972593

RESUMEN

Cardiomyocytes are highly metabolic cells responsible for generating the contractile force in the heart. During fetal development and regeneration, these cells actively divide but lose their proliferative activity in adulthood. The mechanisms that coordinate their metabolism and proliferation are not fully understood. Here, we study the role of the transcription factor NFYa in developing mouse hearts. Loss of NFYa alters cardiomyocyte composition, causing a decrease in immature regenerative cells and an increase in trabecular and mature cardiomyocytes, as identified by spatial and single-cell transcriptome analyses. NFYa-deleted cardiomyocytes exhibited reduced proliferation and impaired mitochondrial metabolism, leading to cardiac growth defects and embryonic death. NFYa, interacting with cofactor SP2, activates genes linking metabolism and proliferation at the transcription level. Our study identifies a nodal role of NFYa in regulating prenatal cardiac growth and a previously unrecognized transcriptional control mechanism of heart metabolism, highlighting the importance of mitochondrial metabolism during heart development and regeneration.


Asunto(s)
Miocitos Cardíacos , Factores de Transcripción , Animales , Ratones , Proliferación Celular/fisiología , Desarrollo Fetal , Corazón Fetal/metabolismo , Corazón/fisiología , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo
6.
Circ Res ; 133(12): 1006-1021, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37955153

RESUMEN

BACKGROUND: The p.Arg14del variant of the PLN (phospholamban) gene causes cardiomyopathy, leading to severe heart failure. Calcium handling defects and perinuclear PLN aggregation have both been suggested as pathological drivers of this disease. Dwarf open reading frame (DWORF) has been shown to counteract PLN regulatory calcium handling function in the sarco/endoplasmic reticulum (S/ER). Here, we investigated the potential disease-modulating action of DWORF in this cardiomyopathy and its effects on calcium handling and PLN aggregation. METHODS: We studied a PLN-R14del mouse model, which develops cardiomyopathy with similar characteristics as human patients, and explored whether cardiac DWORF overexpression could delay cardiac deterioration. To this end, R14Δ/Δ (homozygous PLN-R14del) mice carrying the DWORF transgene (R14Δ/ΔDWORFTg [R14Δ/Δ mice carrying the DWORF transgene]) were used. RESULTS: DWORF expression was suppressed in hearts of R14Δ/Δ mice with severe heart failure. Restoration of DWORF expression in R14Δ/Δ mice delayed cardiac fibrosis and heart failure and increased life span >2-fold (from 8 to 18 weeks). DWORF accelerated sarcoplasmic reticulum calcium reuptake and relaxation in isolated cardiomyocytes with wild-type PLN, but in R14Δ/Δ cardiomyocytes, sarcoplasmic reticulum calcium reuptake and relaxation were already enhanced, and no differences were detected between R14Δ/Δ and R14Δ/ΔDWORFTg. Rather, DWORF overexpression delayed the appearance and formation of large pathogenic perinuclear PLN clusters. Careful examination revealed colocalization of sarcoplasmic reticulum markers with these PLN clusters in both R14Δ/Δ mice and human p.Arg14del PLN heart tissue, and hence these previously termed aggregates are comprised of abnormal organized S/ER. This abnormal S/ER organization in PLN-R14del cardiomyopathy contributes to cardiomyocyte cell loss and replacement fibrosis, consequently resulting in cardiac dysfunction. CONCLUSIONS: Disorganized S/ER is a major characteristic of PLN-R14del cardiomyopathy in humans and mice and results in cardiomyocyte death. DWORF overexpression delayed PLN-R14del cardiomyopathy progression and extended life span in R14Δ/Δ mice, by reducing abnormal S/ER clusters.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Longevidad , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
7.
Circulation ; 148(19): 1490-1504, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37712250

RESUMEN

BACKGROUND: Cardiovascular diseases are the main cause of worldwide morbidity and mortality, highlighting the need for new therapeutic strategies. Autophosphorylation and subsequent overactivation of the cardiac stress-responsive enzyme CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) serves as a central driver of multiple cardiac disorders. METHODS: To develop a comprehensive therapy for heart failure, we used CRISPR-Cas9 adenine base editing to ablate the autophosphorylation site of CaMKIIδ. We generated mice harboring a phospho-resistant CaMKIIδ mutation in the germline and subjected these mice to severe transverse aortic constriction, a model for heart failure. Cardiac function, transcriptional changes, apoptosis, and fibrosis were assessed by echocardiography, RNA sequencing, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and standard histology, respectively. Specificity toward CaMKIIδ gene editing was assessed using deep amplicon sequencing. Cellular Ca2+ homeostasis was analyzed using epifluorescence microscopy in Fura-2-loaded cardiomyocytes. RESULTS: Within 2 weeks after severe transverse aortic constriction surgery, 65% of all wild-type mice died, and the surviving mice showed dramatically impaired cardiac function. In contrast to wild-type mice, CaMKIIδ phospho-resistant gene-edited mice showed a mortality rate of only 11% and exhibited substantially improved cardiac function after severe transverse aortic constriction. Moreover, CaMKIIδ phospho-resistant mice were protected from heart failure-related aberrant changes in cardiac gene expression, myocardial apoptosis, and subsequent fibrosis, which were observed in wild-type mice after severe transverse aortic constriction. On the basis of identical mouse and human genome sequences encoding the autophosphorylation site of CaMKIIδ, we deployed the same editing strategy to modify this pathogenic site in human induced pluripotent stem cells. It is notable that we detected a >2000-fold increased specificity for editing of CaMKIIδ compared with other CaMKII isoforms, which is an important safety feature. While wild-type cardiomyocytes showed impaired Ca2+ transients and an increased frequency of arrhythmias after chronic ß-adrenergic stress, CaMKIIδ-edited cardiomyocytes were protected from these adverse responses. CONCLUSIONS: Ablation of CaMKIIδ autophosphorylation by adenine base editing may offer a potential broad-based therapeutic concept for human cardiac disease.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Ratones , Humanos , Animales , Edición Génica , Sistemas CRISPR-Cas , Ratones Noqueados , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación , Fibrosis , Adenina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo
8.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395273

RESUMEN

Mutations in genes encoding nuclear envelope proteins lead to diseases known as nuclear envelopathies, characterized by skeletal muscle and heart abnormalities, such as Emery-Dreifuss muscular dystrophy (EDMD). The tissue-specific role of the nuclear envelope in the etiology of these diseases has not been extensively explored. We previously showed that global deletion of the muscle-specific nuclear envelope protein NET39 in mice leads to neonatal lethality due to skeletal muscle dysfunction. To study the potential role of the Net39 gene in adulthood, we generated a muscle-specific conditional knockout (cKO) of Net39 in mice. cKO mice recapitulated key skeletal muscle features of EDMD, including muscle wasting, impaired muscle contractility, abnormal myonuclear morphology, and DNA damage. The loss of Net39 rendered myoblasts hypersensitive to mechanical stretch, resulting in stretch-induced DNA damage. Net39 was downregulated in a mouse model of congenital myopathy, and restoration of Net39 expression through AAV gene delivery extended life span and ameliorated muscle abnormalities. These findings establish NET39 as a direct contributor to the pathogenesis of EDMD that acts by protecting against mechanical stress and DNA damage.


Asunto(s)
Distrofia Muscular de Emery-Dreifuss , Animales , Ratones , Estrés Mecánico , Distrofia Muscular de Emery-Dreifuss/metabolismo , Núcleo Celular/metabolismo , Músculo Esquelético/metabolismo , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
9.
Nat Commun ; 14(1): 4333, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468485

RESUMEN

Skeletal muscle fibers express distinct gene programs during development and maturation, but the underlying gene regulatory networks that confer stage-specific myofiber properties remain unknown. To decipher these distinctive gene programs and how they respond to neural activity, we generated a combined multi-omic single-nucleus RNA-seq and ATAC-seq atlas of mouse skeletal muscle development at multiple stages of embryonic, fetal, and postnatal life. We found that Myogenin, Klf5, and Tead4 form a transcriptional complex that synergistically activates the expression of muscle genes in developing myofibers. During myofiber maturation, the transcription factor Maf acts as a transcriptional switch to activate the mature fast muscle gene program. In skeletal muscles of mutant mice lacking voltage-gated L-type Ca2+ channels (Cav1.1), Maf expression and myofiber maturation are impaired. These findings provide a transcriptional atlas of muscle development and reveal genetic links between myofiber formation, maturation, and contraction.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratones , Animales , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Diferenciación Celular
10.
Mol Ther Nucleic Acids ; 32: 522-535, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37215149

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive disease of progressive muscle weakness and wasting caused by the absence of dystrophin protein. Current gene therapy approaches using antisense oligonucleotides require lifelong dosing and have limited efficacy in restoring dystrophin production. A gene editing approach could permanently correct the genome and restore dystrophin protein expression. Here, we describe single-swap editing, in which an adenine base editor edits a single base pair at a splice donor site or splice acceptor site to enable exon skipping or reframing. In human induced pluripotent stem cell-derived cardiomyocytes, we demonstrate that single-swap editing can enable beneficial exon skipping or reframing for the three most therapeutically relevant exons-DMD exons 45, 51, and 53-which could be beneficial for 30% of all DMD patients. Furthermore, an adeno-associated virus delivery method for base editing components can efficiently restore dystrophin production locally and systemically in skeletal and cardiac muscles of a DMD mouse model containing a deletion of Dmd exon 44. Our studies demonstrate single-swap editing as a potential gene editing therapy for common DMD mutations.

11.
Hum Gene Ther ; 34(9-10): 379-387, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060194

RESUMEN

Duchenne muscular dystrophy (DMD) is a debilitating genetic disorder that results in progressive muscle degeneration and premature death. DMD is caused by mutations in the gene encoding dystrophin protein, a membrane-associated protein required for maintenance of muscle structure and function. Although the genetic mutations causing the disease are well known, no curative therapies have been developed to date. The advent of genome-editing technologies provides new opportunities to correct the underlying mutations responsible for DMD. These mutations have been successfully corrected in human cells, mice, and large animal models through different strategies based on CRISPR-Cas9 gene editing. Ideally, CRISPR-editing could offer a one-time treatment for DMD by correcting the genetic mutations and enabling normal expression of the repaired gene. However, numerous challenges remain to be addressed, including optimization of gene editing, delivery of gene-editing components to all the muscles of the body, and the suppression of possible immune responses to the CRISPR-editing therapy. This review provides an overview of the recent advances toward CRISPR-editing therapy for DMD and discusses the opportunities and the remaining challenges in the path to clinical translation.


Asunto(s)
Distrofia Muscular de Duchenne , Ratones , Humanos , Animales , Distrofia Muscular de Duchenne/genética , Sistemas CRISPR-Cas , Terapia Genética/métodos , Exones , Distrofina/genética , Edición Génica/métodos , Modelos Animales de Enfermedad
12.
Sci Adv ; 9(17): eade8184, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115930

RESUMEN

Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma in children that resembles developing skeletal muscle. Unlike normal muscle cells, RMS cells fail to differentiate despite expression of the myogenic determination protein MYOD. The TWIST2 transcription factor is frequently overexpressed in fusion-negative RMS (FN-RMS). TWIST2 blocks differentiation by inhibiting MYOD activity in myoblasts, but its role in FN-RMS pathogenesis is incompletely understood. Here, we show that knockdown of TWIST2 enables FN-RMS cells to exit the cell cycle and undergo terminal myogenesis. TWIST2 knockdown also substantially reduces tumor growth in a mouse xenograft model of FN-RMS. Mechanistically, TWIST2 controls H3K27 acetylation at distal enhancers by interacting with the chromatin remodelers SMARCA4 and CHD3 to activate growth-related target genes and repress myogenesis-related target genes. These findings provide insights into the role of TWIST2 in maintaining an undifferentiated and tumorigenic state of FN-RMS and highlight the potential of suppressing TWIST2-regulated pathways to treat FN-RMS.


Asunto(s)
Rabdomiosarcoma , Sarcoma , Humanos , Animales , Ratones , Ensamble y Desensamble de Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Rabdomiosarcoma/genética , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Sarcoma/genética , Diferenciación Celular/genética , Línea Celular Tumoral , ADN Helicasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Represoras/metabolismo , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo
13.
Nat Med ; 29(2): 401-411, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36797478

RESUMEN

The most common form of genetic heart disease is hypertrophic cardiomyopathy (HCM), which is caused by variants in cardiac sarcomeric genes and leads to abnormal heart muscle thickening. Complications of HCM include heart failure, arrhythmia and sudden cardiac death. The dominant-negative c.1208G>A (p.R403Q) pathogenic variant (PV) in ß-myosin (MYH7) is a common and well-studied PV that leads to increased cardiac contractility and HCM onset. In this study we identify an adenine base editor and single-guide RNA system that can efficiently correct this human PV with minimal bystander editing and off-target editing at selected sites. We show that delivery of base editing components rescues pathological manifestations of HCM in induced pluripotent stem cell cardiomyocytes derived from patients with HCM and in a humanized mouse model of HCM. Our findings demonstrate the potential of base editing to treat inherited cardiac diseases and prompt the further development of adenine base editor-based therapies to correct monogenic variants causing cardiac disease.


Asunto(s)
Cardiomiopatía Hipertrófica , Miocitos Cardíacos , Humanos , Animales , Ratones , Edición Génica , Miocardio , Arritmias Cardíacas , Mutación
14.
Science ; 379(6628): 179-185, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36634166

RESUMEN

CRISPR-Cas9 gene editing is emerging as a prospective therapy for genomic mutations. However, current editing approaches are directed primarily toward relatively small cohorts of patients with specific mutations. Here, we describe a cardioprotective strategy potentially applicable to a broad range of patients with heart disease. We used base editing to ablate the oxidative activation sites of CaMKIIδ, a primary driver of cardiac disease. We show in cardiomyocytes derived from human induced pluripotent stem cells that editing the CaMKIIδ gene to eliminate oxidation-sensitive methionine residues confers protection from ischemia/reperfusion (IR) injury. Moreover, CaMKIIδ editing in mice at the time of IR enables the heart to recover function from otherwise severe damage. CaMKIIδ gene editing may thus represent a permanent and advanced strategy for heart disease therapy.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Edición Génica , Cardiopatías , Animales , Humanos , Ratones , Sistemas CRISPR-Cas , Cardiopatías/genética , Cardiopatías/terapia , Células Madre Pluripotentes Inducidas/enzimología , Miocitos Cardíacos/enzimología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética
15.
Methods Mol Biol ; 2587: 411-425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36401041

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder, caused by mutations in the DMD gene coding dystrophin. Applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) for therapeutic gene editing represents a promising technology to correct this devastating disease through elimination of underlying genetic mutations. Adeno-associated virus (AAV) has been widely used for gene therapy due to its low immunogenicity and high tissue tropism. In particular, CRISPR-Cas9 gene editing components packaged by self-complementary AAV (scAAV) demonstrate robust viral transduction and efficient gene editing, enabling restoration of dystrophin expression throughout skeletal and cardiac muscle in animal models of DMD. Here, we describe protocols for cloning CRISPR single guide RNAs (sgRNAs) into a scAAV plasmid and procedures for systemic delivery of AAVs into a DMD mouse model. We also provide methodologies for quantification of dystrophin restoration after systemic CRISPR-Cas9-mediated correction of DMD.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Ratones , Animales , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Sistemas CRISPR-Cas/genética , Exones , Músculo Esquelético/metabolismo
16.
Sci Transl Med ; 14(672): eade1633, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36417486

RESUMEN

Mutations in RNA binding motif protein 20 (RBM20) are a common cause of familial dilated cardiomyopathy (DCM). Many RBM20 mutations cluster within an arginine/serine-rich (RS-rich) domain, which mediates nuclear localization. These mutations induce RBM20 mis-localization to form aberrant ribonucleoprotein (RNP) granules in the cytoplasm of cardiomyocytes and abnormal alternative splicing of cardiac genes, contributing to DCM. We used adenine base editing (ABE) and prime editing (PE) to correct pathogenic p.R634Q and p.R636S mutations in the RS-rich domain in human isogenic induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Using ABE to correct RBM20R634Q human iPSCs, we achieved 92% efficiency of A-to-G editing, which normalized alternative splicing of cardiac genes, restored nuclear localization of RBM20, and eliminated RNP granule formation. In addition, we developed a PE strategy to correct the RBM20R636S mutation in iPSCs and observed A-to-C editing at 40% efficiency. To evaluate the potential of ABE for DCM treatment, we also created Rbm20R636Q mutant mice. Homozygous (R636Q/R636Q) mice developed severe cardiac dysfunction, heart failure, and premature death. Systemic delivery of ABE components containing ABEmax-VRQR-SpCas9 and single-guide RNA by adeno-associated virus serotype 9 in these mice restored cardiac function as assessed by echocardiography and extended life span. As seen by RNA sequencing analysis, ABE correction rescued the cardiac transcriptional profile of treated R636Q/R636Q mice, compared to the abnormal gene expression seen in untreated mice. These findings demonstrate the potential of precise correction of genetic mutations as a promising therapeutic approach for DCM.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Ratones , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Mutación/genética , Miocitos Cardíacos/metabolismo , Genómica
17.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377660

RESUMEN

Mutations in nuclear envelope proteins (NEPs) cause devastating genetic diseases, known as envelopathies, that primarily affect the heart and skeletal muscle. A mutation in the NEP LEM domain-containing protein 2 (LEMD2) causes severe cardiomyopathy in humans. However, the roles of LEMD2 in the heart and the pathological mechanisms responsible for its association with cardiac disease are unknown. We generated knockin (KI) mice carrying the human c.T38>G Lemd2 mutation, which causes a missense amino acid exchange (p.L13>R) in the LEM domain of the protein. These mice represent a preclinical model that phenocopies the human disease, as they developed severe dilated cardiomyopathy and cardiac fibrosis leading to premature death. At the cellular level, KI/KI cardiomyocytes exhibited disorganization of the transcriptionally silent heterochromatin associated with the nuclear envelope. Moreover, mice with cardiac-specific deletion of Lemd2 also died shortly after birth due to heart abnormalities. Cardiomyocytes lacking Lemd2 displayed nuclear envelope deformations and extensive DNA damage and apoptosis linked to p53 activation. Importantly, cardiomyocyte-specific Lemd2 gene therapy via adeno-associated virus rescued cardiac function in KI/KI mice. Together, our results reveal the essentiality of LEMD2 for genome stability and cardiac function and unveil its mechanistic association with human disease.


Asunto(s)
Cardiomiopatías , Membrana Nuclear , Humanos , Ratones , Animales , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Daño del ADN , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
18.
J Cachexia Sarcopenia Muscle ; 13(6): 3106-3121, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36254806

RESUMEN

BACKGROUND: Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro. METHODS: Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle. To simulate Duchenne muscular dystrophy (DMD), a patient-specific induced pluripotent stem cell line was compared to a CRISPR/Cas9-edited isogenic control line. RESULTS: The established skeletal muscle differentiation protocol robustly and faithfully recapitulates critical steps of embryonic myogenesis in two-dimensional and three-dimensional cultures, resulting in functional human skeletal muscle organoids (SMOs) and engineered skeletal muscles (ESMs) with a regeneration-competent satellite-like cell pool. Tissue-engineered muscle exhibits organotypic maturation and function (up to 5.7 ± 0.5 mN tetanic twitch tension at 100 Hz in ESM). Contractile performance could be further enhanced by timed thyroid hormone treatment, increasing the speed of contraction (time to peak contraction) as well as relaxation (time to 50% relaxation) of single twitches from 107 ± 2 to 75 ± 4 ms (P < 0.05) and from 146 ± 6 to 100 ± 6 ms (P < 0.05), respectively. Satellite-like cells could be documented as largely quiescent PAX7+ cells (75 ± 6% Ki67- ) located adjacent to muscle fibres confined under a laminin-containing basal membrane. Activation of the engineered satellite-like cell niche was documented in a cardiotoxin injury model with marked recovery of contractility to 57 ± 8% of the pre-injury force 21 days post-injury (P < 0.05 compared to Day 2 post-injury), which was completely blocked by preceding irradiation. Absence of dystrophin in DMD ESM caused a marked reduction of contractile force (-35 ± 7%, P < 0.05) and impaired expression of fast myosin isoforms resulting in prolonged contraction (175 ± 14 ms, P < 0.05 vs. gene-edited control) and relaxation (238 ± 22 ms, P < 0.05 vs. gene-edited control) times. Restoration of dystrophin levels by gene editing rescued the DMD phenotype in ESM. CONCLUSIONS: We introduce human muscle models with canonical properties of bona fide skeletal muscle in vivo to study muscle development, maturation, disease and repair.


Asunto(s)
Distrofia Muscular de Duchenne , Células Satélite del Músculo Esquelético , Humanos , Distrofia Muscular de Duchenne/genética , Músculo Esquelético/metabolismo , Desarrollo de Músculos/genética , Células Satélite del Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo
19.
Mol Ther Nucleic Acids ; 29: 525-537, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36035749

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal neuromuscular disease caused by mutations in the X-linked dystrophin (DMD) gene. Exon deletions flanking exon 51, which disrupt the dystrophin open reading frame (ORF), represent one of the most common types of human DMD mutations. Previously, we used clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) gene editing to restore the reading frame of exon 51 in mice and dogs with exon 50 deletions. Due to genomic sequence variations between species, the single guide RNAs (sgRNAs) used for DMD gene editing are often not conserved, impeding direct clinical translation of CRISPR-Cas therapeutic gene-editing strategies. To circumvent this potential obstacle, we generated a humanized DMD mouse model by replacing mouse exon 51 with human exon 51, followed by deletion of mouse exon 50, which disrupted the dystrophin ORF. Systemic CRISPR-Cas9 gene editing using an sgRNA that targets human exon 51 efficiently restored dystrophin expression and ameliorated pathologic hallmarks of DMD, including histopathology and grip strength in this mouse model. This unique DMD mouse model with the human genomic sequence allows in vivo assessment of clinically relevant gene editing strategies as well as other therapeutic approaches and represents a significant step toward therapeutic translation of CRISPR-Cas9 gene editing for correction of DMD.

20.
J Clin Invest ; 132(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35642635

RESUMEN

Skeletal muscle fibers contain hundreds of nuclei, which increase the overall transcriptional activity of the tissue and perform specialized functions. Multinucleation occurs through myoblast fusion, mediated by the muscle fusogens Myomaker (MYMK) and Myomixer (MYMX). We describe a human pedigree harboring a recessive truncating variant of the MYMX gene that eliminates an evolutionarily conserved extracellular hydrophobic domain of MYMX, thereby impairing fusogenic activity. Homozygosity of this human variant resulted in a spectrum of abnormalities that mimicked the clinical presentation of Carey-Fineman-Ziter syndrome (CFZS), caused by hypomorphic MYMK variants. Myoblasts generated from patient-derived induced pluripotent stem cells displayed defective fusion, and mice bearing the human MYMX variant died perinatally due to muscle abnormalities. In vitro assays showed that the human MYMX variant conferred minimal cell-cell fusogenicity, which could be restored with CRISPR/Cas9-mediated base editing, thus providing therapeutic potential for this disorder. Our findings identify MYMX as a recessive, monogenic human disease gene involved in CFZS, and provide new insights into the contribution of myoblast fusion to neuromuscular diseases.


Asunto(s)
Síndrome de Mobius , Enfermedades Musculares , Animales , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas Musculares/genética , Enfermedades Musculares/genética , Síndrome de Pierre Robin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...